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Abstract—The linear stability with respect to axisymmetric disturbances of natural convection in narrow-
gap, spherical annuli is investigated. The basic motion is an eight-order perturbation solution in the small
parameter ¢ = 1—», where n is the ratio of inner radius of the annulus to outer radius. The disturbance
equations are reduced to a system of ordinary differential equations by means of a method of partial spectral
expansions. These equations constitute an eigenvalue problem which is soilved for the critical Rayleigh
number as a function of 4 and Prandtl number, Pr. Cases considered are Pr = 0.1, 1, 10, and 100 for
0.900 < n <£0.995. A comparison with the experimental results found in the literature indicates that non-
axisymmetric time periodic bifurcation will most likely take precedence over the case considered herein for
Pr =1, 10. However, it appears that steady axisymmetric bifurcation is possible for Pr = 0.1.

1. INTRODUCTION

STABILITY analyses for a variety of flows in spherical
annuli have been reported in the literature. Examples
include stability of spherical Couette flows using
energy [ 1] and linear [2] methods, and stability of the
motionless state of a thermally stratified fluid, i.e. the
spherical analog of the Bénard problem [3-5]. Here,
the linear stability of the natural convection-driven
basic motion is examined for narrow-gap, spherical
annuli. The disturbances are assumed to be
axisymmetric. The non-zero basic motion arises
through density variations within the fluid due to the
inner and outer spherical boundaries being at different
temperatures. The density gradient is not everywhere
parallel to gravity and thus the fluid is in motion for all
non-zero temperature differences across the
boundaries. The present investigation is thus to be
contrasted with stability analyses for the spherical
analog of the Bénard problem.

Motivation for this analysis is provided by the
unsteadiness in the basic motion as observed in refs.
[6-8] when a certain critical value of the Rayleigh
number (Ra = gfATAR?/va) is exceeded. The
experiments of Bishop et al. [6] and Yin et al. [7, 8]
have indicated that the nature of the fluid motion is
dependent upon the radius ratio and Prandtl number.
For Ra below a certain critical value, a steady
‘crescent-eddy’ (CE) flow pattern is observed in the
range of radius ratios (y = R,/R,) of 0.36-0.92 for air
as the working fluid (cf. Fig. 1). This flow pattern
consists of thin, high speed layers ascending along the
inner sphere and descending along the outer sphere
with a large, relatively stagnant, central region. As Ra
is increased while limiting the radius ratio to small or
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intermediate values, a steady, kidney-shaped eddy
(KSE) flow pattern is observed. The flow is similar to
the CE type with the exception that the central low
speed region is distorted into a shape resembling a
kidney.

If Ra is increased above certain critical values,
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Fi1G. 1. Natural convection flow regimes for air in spherical
annuli based on the flow visualization data of Bishop et al.
[6] and Yin et al. [7,8]. The results of the present
calculations are shown (Pr=1) along with the line
Ra, =413 (o, =3.12) corresponding to the case of a
horizontal fluid layer heated from below. The flow regime
boundaries are only approximately drawn.
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NOMENCLATURE

e, €  unit vectors in the radial and T base flow temperature field [°C]

latitudinal directions, respectively T, T, inner, outer surface temperature [°C]
g gravitational acceleration constant AT T,— T, [°C]

fms™?] v, vg  radial, latitudinal disturbance velocity
g.{r),  partial spectral expansion [ms™ 4]
h,(r)  functions V,,V; radial, latitudinal base flow velocity
Gr Grashof number, gBATR2/v? [ms™ 1]
i V-1 4 disturbed flow velocity vector (#,, f,)
k thermal conductivity of the fluid [ms™!].

[Wm™'°C™]
N,+1 numbers of terms retained in the base Greek symbols pp e P

flow expansion a thermal dﬁTu§1V1ty [m?s ]. '
N,+1 number of terms retained in the % Bis Vis O X, .coefﬁc:ents of the baS{c motion

disturbance flow expansion B _ coeflicient qf volume expansion [K]
Nu(®) local Nusselt number I'AJE, Y, Q functions describing the base
e flow
Nu surface-averaged Nusselt number of . .

. e 1 —y, relative gap width

criticality 4 scaled radial coordinate, (r —n)/e
P.p b;se flow, disturbance pressure field " radius ratio, TR,
o [_ aj _ g latitudinal coordinate
P disturbed flow pressure, P+pe™™ [Pa] : S . 2.1

A ! v kinematic viscosity [m*s™ 1]

P, Legendre polynomial of the first kind ¢ cos 0

of degree n - real part of 1
Pr Prandt! number, v/a o Ie Iz rd‘o ls (s d:!
¥ radial coordinate {m] ongitudinal coordinate

. . ® disturbance temperature field [°C]
r*,r*  inner and outer radii of the spheres, . . 5 o1

scaled by AR 0/ disturbance streamfunction [m*s™1]

. ¥ base flow streamfunction [m3s™*]
R stability parameter, £32Gr/? o imaginary part of s [s~']
Ra Rayleigh number, gSAT(AR) /va ginary p S8
R, }falue of R at cn:tica}ity, Griizgd? Subscript
IA{I} R, lqumeri,zot[xte]r radius of the spheres {m] c value at criticality.
o T4y LM

s wave number, ¢ +iw [s”!] Superscript
t time [s] ! d/dg.

unsteady flows are observed for air. At small radius
ratios, the modified kidney-shaped eddy (MKSE)
occurs. The pattern is characterized by contractions,
of somewhat irregular period, in the central low speed
region. At intermediate radius ratios, the periodic
interior contraction (PIC) flow regime is reported.
This pattern is similar to the MKSE with the exception
that the magnitude of the oscillations in the low speed
region increase to the point where interaction with the
ascending high speed layer occurs. The three-
dimensional spiral flow (3DSF) pattern occurs at
intermediate to large radius ratios (i.e. # > 1} and is
characterized by the separation of the ascending high
speed layer which then shoots into the upper annular
region forming counter-rotating vortex pairs. The
vortex pairs then become entrained in the descending
outer layers forming three-dimensional spiral
motions. The falling vortices (FV) flow pattern occurs
at large radius ratios and consists of the formation and
shedding of counter-rotating cells in the upper annular

region. These cells periodically coalesce and then
become entrained in the descending flow.

The experimental results for water [7,8] indicate
(cf. Fig. 2) only one steady flow pattern, the steady
dog-face type (SDFT), which occurs at all radius ratios
for smaller Ra. This pattern consists of three distinct
regions. The first is the thin, high speed layers
ascending along the inner sphere and descending
along the outer sphere. The second is a low speed
region which is located in the upper portion of the
annulus and is composed of two secondary cells
rotating concurrently with the primary flow. In the
remainder of the annulus there is a large and relatively
stagnant region in which the motion may be detected
only by long-time photographic exposures.

As Rais increased from low values an unsteady dog-
face type (USDFT) flow develops which is similar to
the SDFT with the exception that the upper secondary
cell is no longer stationary. The cell randomly forms
and then submerges itself in the large stagnant region
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FI1G. 2. Natural convection flow regimes for water in

spherical annuli [7, 8]. Results from the present calculations

with Pr = 10 are shown. The line Ra, =41.3 (g, =3.12)

corresponding to the case of a horizontal fluid layer heated

from below is also shown. The flow regime boundaries are
only approximately drawn.

occupying the upper annular region. Other unsteady
flow patterns for water include the interior tertiary
(IT) flow pattern which occurs at intermediate radius
ratios with sufficiently large Ra. In this flow, the weak
shear region between the secondary cells of the SDFT
flow expand to form a weak, oscillatory, tertiary cell
while the upper secondary cell is reduced in size. At
large radius ratios, a FV flow pattern is observed
which is similar to the FV flows for air.

Aside from the flow visualization results, many
analytical and numerical studies have been conducted
to determine the basic motion in this geometry. The
majority of these studies use the steady form of the
governing equations (e.g. [9-11]) although some have
used the transient formulation (e.g. [12, 13]). Only
one work, that of Robertson [13], actually reported
evolutionary results. In general, the computed steady
streamline contours and isotherms show good
agreement with the flow visualization results,
especially for air. None of these studies report
transition to unsteady flow for increasing Ra, as was
observed in the flow visualization experiments.

Analytical studies of the stability of natural
convection in spherical annuli is, to the best of our
knowledge, non-existent in the literature. In a related
geometry, Mojtabi et al. [ 14] used the energy stability
theory to perform a local analysis of the stability of
natural convection in concentric, cylindrical annuli.
The base flow was calculated by a perturbation
method in Rayleigh number and terms were
maintained through second order. The temperature
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and radial velocity disturbances were developed as
periodic wave functions of the axial coordinate.
Results of their analysis indicate that as n — 1, the
critical Rayleigh number tends to 1708 with a wave
number of 3.12, corresponding to the onset of
convection in a horizontal fluid layer with rigid-rigid
boundaries and heated from below [15].

In the present study, linear theory is used to
examine the stability with respect to axisymmetric
disturbances of natural convection in a narrow-gap,
spherical annulus with isothermal boundaries.
Specifically, the objective is to find a first
approximation to the dividing line between steady and
unsteady flows for n=~1 as reported in the
experimental studies [6-8].

2. THE BASIC MOTION

An approximate closed form solution for the flow in
this geometry has been obtained by Wright [10] for
the special case of narrow-gap, spherical annuli. This
solution is briefly described here.

The physical domain is bounded by concentric inner
and outer spherical surfaces of radii R, and R, which
are maintained at uniform temperatures T; and T,
respectively, with 7T,> T,. Standard spherical
coordinates are used with (r,&,¢) being the
dimensionless radius, cosine of the polar angle 8, and
azimuthal angle, respectively. The fluid is assumed to
be strictly Boussinesq and the motion is assumed to be
axisymmetric. Taking the curl of the momentum
equation and introducing a streamfunction defined in
terms of V, and V} as

1 0¥ (1-&3)~ Y2 oy
Vo= r? 0&’ Vo= ¥ or 0
it is found that the momentum and energy equations
become

oy Grm{(l—cl) 0 [ E%Y aw]
(

ool (1-¢&Y) ar

o [E2¥ oW ,
—(-3;[ p 06] (1-¢ )[ & ¢ 55]} @)

g PrOr2[O¥ T 0w oT
ViT="03 or o8& o or )
where
0%(+) (1-¢%d%()
2(,) =
E'e) or? + r? oE2
L_olar,e, 1o n 0
v =g 0]

In (2) and (3), ¥ has been scaled in terms of the
fluid particle buoyancy rise velocity, T in terms of the
temperature difference across the gap, and r in terms of
R,. The Prandtl and Grashof numbers are defined,
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respectively, as

v
Pr= . Gr = gBATR2 /v,
The four boundary conditions on ¥ and the two
boundary conditions on T are obtained from the no-
slip and constant temperature conditions at the inner
and outer boundaries. Hence

v v Ik v
E» (ﬂ,é)=ﬁ(1,€)=E(n,f)=g(l,§)=0 )
T,9)=1, T(1,)=0 (5)

where n = R/R,.

Wright examined the case of narrow annular gaps,
which in terms of # requires 1 —y = ¢ « 1. To indicate
explicitly the relative order-of-magnitude of terms for
this case, the radial coordinate r in (2) and (3) was
rescaled in terms of the dimensionless variable { as

r—n
&

{= (6)
so that the radial coordinate is mapped onto {: [0, 1].
Wright found that under this scaling (2) and (3) with
(4) and (5) admitted a perturbation solution in ¢ of the
form

N

W, &) ~ Zb e"¥,((, <) 0]
n=0
Ny

T8 = ¥ T 9). ®)
n=0

Substituting (7) and (8) into (2) and (3), Wright found
that for a given order of ¢, the problem was reduced to
one of solving ordinary differential equations in ¥,
and T, with only derivatives with respect to { occurring
on the LHS. Closed form solutions were obtained
through N, = 8 and in tabular form through N, = 11.
In the solution of the stability problem it was found
that the numerical technique used to solve the
equations was somewhat better behaved when the
equations were rescaled in terms of the gap width,
AR = R, —R,, as the length scale. In terms of this
scaling, Wright’s solution may be expressed as

YO~ (1= R, Proe)+EA R, Proe)] - (9)
T, &)~ YR, Pr.e)

+E[EC; R, Pre) +EQ(C R, Proe)] (10)
where
R 2 .
I'=— Z (= D'ed
& =2
R3 10 o
A== Y (—DL
€ =2
11 o
Y=14 3 (= Ot (11)
i=1

R*Pr 8 i
2 (~aL

i=1

- =
=1
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and

1
Q=¢*R*Pr ¥ (- )iyl
i=1

In (9) and (10), r is now scaled in terms of the gap
width. The parameter R is the square root of the
Grashof number based on gap width
3152

R= [———gﬂAVTZAR ] =62 (1)
The coefficients a,, B, y;, J; and yx; in (12) are
continuous functions of R, Pr and ¢. The coefficients
are quite lengthy and are omitted here; they can be
found in ref. [16]. Information on the range of
applicability and convergence of (9) and (10) can be
found in ref. [10].

3. THE STABILITY PROBLEM

We begin by writing the equations of motion
governing the time evolution of the flow for a
Boussinesq fluid in spherical coordinates. When the
length scale is based on AR the variable r is replaced by
re, and we find with { = r — n/e that

V=0 (13)

é
Ewm-ve
= —VP+RT(fe,— (1312, )+ V2 (14)

Pr%+PrR0-VT=V2T (15)
The dependent variables are now decomposed into a
component representing the basic motion and a
component representing a perturbation of the basic
motion. It is assumed that the disturbances are
axisymmetric and that the solutions to the
perturbation quantities are in terms of exponentials.
The dependent variables are written as

W, & 0) = V(r, &) +v(r, &) e (16)
T(r &, 1) = T(r, &)+ ®(r, &) e (17)
P(r.&,t) = P(r, &) +p(r, &) e (18)

where s =o+iw; V, P and T are basic motion
quantities, and v, p and @ are disturbance quantities.
Equations (16)—(18) are now substituted into (13)}-(15)
and nonlinear terms in the disturbance quantities are
neglected. Taking the curl of (14) and introducing
basic motion and disturbance streamfunctions ¥ and
¥, respectively, (14) and (15) become

ERIESE
E4II/+SE2l// = R{ r2 Fé

EY oy ¥ EX
x[(l—éZ)EW?(l—éZ)]

2 2 F]
o] e 23]

Tarlae 2T "o e
(19)
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PrR[0% 0® OF 0@
V2® 4 Prs® = — [ et

P | or oe o or
oT &y T oy
+¥E‘F%]' 20)

From (4) and (5) and (16) and (17) one finds that the
conditions on i and ® are

L L
E ri’é)— or (ro,c)—ac ri’é)
_W o=
_ag("”f)“o @1
O(r¥, &) = 0(r3,8) =0 (22)

where, under the scaling based on gap width, r* = n/e
and r* = 1/e. Equations (19) and (20) with (21) and
(22) compose the eigenvalue problem governing the
linear stability of (9) and (10) to axisymmetric
disturbances.

To reduce the system of partial differential
equations to a system of ordinary differential
equations, the method of partial spectral expansions is
used. The dependent variables are therefore
expressed as

N,
8 = (1-8) Y g (IP.&)

n=0

(23)

o, 8)= Y h(IPyE)

n=90

(24)

where P,(£) are the Legendre polynomials of the first
kind of degree n and g,(r) and h,(r),n=0,1,..., N,
are to-be-determined functions of r. Note that the term
(1—£2) = sin? 0 has been introduced in (23) to ensure
the condition of no flow across the polar axis,
consistent with the assumption of axisymmetric
disturbances. One can easily verify that the analogous
insulated condition for @ is identically satisfied by (24)
até=—-1,1.

To eliminate the angular dependence, (9) and (10)
and (23) and (24) are substituted into (19) and (20).
The resultant equations are then multiplied by P, (),
where m ranges from 0 < m < N, and then integrated
over the domain &:[ —1, 1]. Using the orthogonality
and recursion relationship for the Legendre
polynomials, the explicit angular dependence can then
be eliminated. Evaluation of these integrals results in
coefficient matrices indexed by m and n. For each
index m,0 < m < Ny, the following equations are then
obtained.

e "

"

2m(m+ 1)+ 2 2RA
3 —S+——5"/9m

A 6AT 4 1)+2
+‘{R[F_T4]_M%”)—ﬂ

+RA[m(m+ 1)+2]}g’

m
r4
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4

+ {8 —m(m+ 1){m(m+ 1)+2]
r

+s[m(m+ 1)+2] 4RA[m(m+ 1)+2]}g

r? rs

R(2m+1) ¥4
¥ Z {Amngn+ang;1

n=0
+Cmng;:+Dmng:rl|l +Emnhn}

W = _% Ho+ [m(m+ 1) — Prsr?]
;

—rRh,, +
(25)

h
r? "

PrR PrR(2m+1
+—:2—(5g',,—Ah;,)+—’—(7'"———)

Nd
X Z {anhn+Gmnh:t+Hmngn+Imng:1}
n=0
where '=d/dr. In (25) and (26), the radially-
dependent base flow functions have been evaluated at
{=1{(r).

The coefficients A,.,, Byys - - under the
summation signs in (25) and (26) contain the base flow
functions (11) as well as the coefficient matrices arising
from the Legendre polynomial integrals. The
expressions for these coefficients and coefficient
matrices are quite lengthy and are given in the
Appendix.

From (21)(24), it is easily shown that boundary
conditions on the unknown functions g,(r) and h,(r)
are

(26)

R .

gulr¥) = gu(r?) = 9,(r3) = g,(r3) = 0,
n=0,1,...,Ny (27)
h(¥)=h,(*)=0, n=0,1,....N;. (28)

To solve (25) and (26) with (27) and (28), we assume
that a principle of exchange of stability exists. Hence, s
is set to zero in (25) and (26) and R is treated as the
stability parameter. The lowest value of R for which
(25) and (26) with (27) and (28) admits a nontrivial
solution is then the critical Grashof number, R2.

The equations are solved by forward integration
using the classic fourth-order Runge-Kutta [17]
technique. The numerical scheme is similar to that
reported by ref. [2]. A brief description is provided
here; full details can be found in ref. [16].

Equations (25) and (26) with conditions (27) and
(28) is in the form of a boundary value problem. To
solve via forward integration, one is then confronted
with 3N+ 3 unknown conditions at either boundary.
To circumvent this, define 3Ny+3 sets of 3N +3
linearly independent ‘guessed’ conditions at (say) r¥.
Equations (25) and (26) are then integrated once for
each set of extra conditions in conjunction with the
known conditions (27) and (28), thus requiring 3N, + 3
integrations of the governing equations. The values of
the dependent variables g,,g,and h,,n =0,1,..., N,
will in general not meet the required conditions (27)
and (28). However, the problem is linear so that a
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linear combination of the independent solutions can
be constructed which meet the required conditions.
For the problem to have a nontrivial solution, the
determinant of the coefficient matrix of the linear
combination of the solutions must vanish when
evaluated at r¥. In general, this condition cannot be
met for arbitrary values of R. Hence, R is increased
from zero until the determinant changes sign. This
criterion then determines the value of the critical
Grashof number, R2.

In terms of numerical accuracy, the number of
integration steps was varied to determine the number
required to reduce changes in R_ to less than 0.10 9. It
was found that 20 integration steps were sufficient for
all combinations of # and Pr considered.

4. RESULTS AND DISCUSSION

The computer algorithm was designed to calculate
R, for given values of the parameters n, Pr, Ny and N,.
For the computations, N, was fixed at eight and N,
was varied from 0 to 12 to ascertain the converged
value of R, for given n and Pr. Fluids with Prandtl
numbers of 0.1, 1.0, 10 and 100 were considered for
radius ratios ranging from 0900 to 0.995, ie.
& =0.005-0.1.

The convergence of R, with increasing N, was found
to be oscillatory. Figures 3 and 4 illustrate the nature
of the convergence for the two cases Pr=1 with
n = 0.950and Pr = 10forn = 0.995. The series clearly
converged only for the cases Pr= 10 and 100 for
# = 0.995. The epsilon algorithm [18], a sequential
method for calculating Padé approximates, was used
to estimate the converged value of R, It was
determined that the nature of the convergence to R,

380 T T T T T T T T T T I
| — Epsilon Algorithm i
340 h
300 | .
- o 4
Y 260 ® .
o a5 O 5 o @ d
220 ® —
- = 4
b
180 -1
)._ .
140 TR R NS WA SR N SN R S R |
0 2 4 6 8 10 12
Nd

FiG. 3. The influence of the number of terms retained in the
partial spectral expansion on R, for the disturbance flow
field. In this case, Pr =1 and 5 = 0.950. The convergent
value of R, was predicted from the epsilon algorithm [18].
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F1G. 4. The influence of the number of terms retained in the
partial spectral expansion on R, for the disturbance flow
field. In this case, Pr = 10 and n = 0.995. The convergent
value of R, was predicted from the epsilon algorithm [18].

became apparent after N, = 1; therefore, the epsilon
algorithm was applied to the partial sums from
N4 =2-12. The results of the epsilon algorithm
calculations are indicated in Figs. 3 and 4.

Figure 5 shows the critical Rayleigh number results
for the various Prandtl numbers considered. In terms
of the stability parameter R, the Rayleigh number
based on gap width is

Ra = R?Pr (29)
800 T T T T T T

- ] Pr =1 g—ﬁ

L o Pr =10 4

700 & Pr = 100 |
T e Pr =01

600 —

L 5

500 b

o I a 7

S 400 |+ B

a [ _

B

300 -

- 2 4

200 ) -

R 4

[

100 + -

- @ & <& —

0 | i 1 1 ] J 1 | I
0.90 0.92 0.94 0.96 0.98 1.00

Radius Ratio, R/R,

F1G. 5. A summary of the critical Rayleigh numbers for
natural convection in narrow-gap, spherical annuli with
axisymmetric disturbances is shown in this illustration.



Stability of natural convection in narrow-gap, spherical annuli

900 T T T T T T T 1
- 8 Pr=20 TJ
800F © Pr=0.1 .
L & Pr =1 a
700 ¢ Pr = 10 4
|l x Pr = 100 _
600 | B
500 n
x 1
400 ®-
T A T
300 + - -
L B 4

A

200 p g .
b ® © |
100 R o @ x:

0 L L% R SR

0.90 0.92 0.94 0.9 0.8 1.00

Radius Ratio, R/R,

FIG. 6. The dependence of the stability parameter

R, = Ra /Pr'’? on the Prandt] number is shown using the

data of Fig. 5. In addition, data for the limiting case Pr =0

are included. R, does not include the Prandtl number in its
definition.

and shown in Fig. 5 is

Ra, = R.Pr'i2, (30)

Figure 5 indicates that for Prandtl numbers of 1, 10
and 100, the data appear to coalesce into a single curve
when plotted in terms of Ra.. For Pr = 0.10, however,
the data lie significantly below the trend set by the
remainder of the data. This occurrence indicates that
the Rayleigh number cannot be used as a single
parameter to determine instability. That this is true
may be illustrated by the following argument. One
would like to look at the limiting case Pr — 0. No-slip
boundary conditions have been imposed; thus, to take
this limit, one must consider the case « — oo with v
finite since Pr = v/a. Then, for Pr — 0, the disturbance
energy equation (26) corresponds to Laplace’s
equations in spherical coordinates and since the
boundary conditions on ® are homogeneous, the only
solution is ® =0. The disturbance problem then
becomes strictly hydrodynamic. The case & — oo with
AT finite implies Ra — 0. Hence, in the limit Pr — 0, it
appears that the Grashof number rather than the

1581
4.6 T T T T T 1
4.2 N -
38l ® ° o]
s R
3.0 -
2 L B Pr=1 -
2.6 F ® Pr =10 -
L 4 PpPr = 100 4
oot ¢ Pr =0.1
1.8 | b
1.4 -
- i
1.0 1 © 1 TR S| 1 & | 1o
0.0 0.92 0.94 0.96 0.98 1.00

Radius Ratio, R/R,

F1G. 7. The dimensionless average surface heat transfer rate,
Nu, at criticality is shown.

Rayleigh number should be viewed as the parameter
controlling stability. Indeed, as Pr — 0, the base state
temperature solution (10) approaches the conduction
solution and the streamfunction solution (9) becomes
solely dependent upon the Grashof number, ie.
W(R, Pr,c) — ¥(R, ¢)| p,~o- The results of Fig. 5 have
been replotted in Fig. 6 in terms of R, = Ra./Pr'/?
(numerical values are listed in Table 1) in order to
illustrate the dependence of R, on Pr as the limit
Pr =0 is approached.

Figure 7 is a plot of the average Nusselt number,

E, at the critical point for the different Prandtl

number fluids considered. Nu is defined to be the
integrated average of the local Nusselt number over
the inner spherical surface. The local Nusselt number
is taken to be the ratio of the local heat transfer rate to
a reference rate defined to be

AT
= —k—. 31
4= —kip 31
Upon evaluation of the integral, one finds
Nu= —{T'(3)+3Q(M) (32)

where T’ and Q are defined under (11). Figure 7

Table 1. Values of the stability parameter, R,

Pr

n 0.0 0.1 1.0 100 100.0
0.900 338.0 213.1 168.7 529 15.9
0.925 217.3 2248 193.9 61.0 18.4
0.950 266.6 152.6 236.6 747 226
0.975 254.6 164.5 3348 102.7 322
0.985 e — 4244 — —
0.990 — — 530.2 — —
0.995 887.6 419.8 750.5 2292 722

HMT 29:10-1
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indicates that Nu is relatively insensitive to . There
are slight fluctuations, but this is believed to be a result
of inaccurate predictions of the converged value of R,
using the epsilon algorithm.

The present results are compared with the
experimental flow visualization results of Bishop et al.
[6]and Yinetal.[7, 8] in Figs. 1 and 2. In these figures
we have delineated (to the best of our ability to
interpret the data) the various reported flow regimes,
including the regions of steady and unsteady flows.
Also included is the result Ra, =413 with wave
number 3.12 for the case of a horizontal fluid layer
heated from below with rigid-rigid boundaries.
Mojtabi et al. [14] also found these to be the
associated limiting values for the case of horizontal,
coaxial cylinders.

The present results for air and water indicate that
Ra,— o0 asn — 1,in agreement with the results of the
Bénard problem [15] with wave number 0 (ie.
axisymmetric disturbances). The experimental data
[6-8] would seem to indicate that the transition line
between steady and unsteady flows approaches
Ra, =413 as n — | and also that the nature of the
bifurcated flow for large # is three-dimensional and
time periodic (i.e. the FV flow pattern). The present
results assume, a priori, the existence of steady
bifurcating solutions and therefore the analysis fails in
predicting this transition. However, the results of the
current work will provide an upper bound to the
critical Rayleigh number.

There is presently no experimental data for which a
comparison with the Pr = 100 and 0.10 results can be
made. The results for Pr=0.10 indicate that the
possibility for steady axisymmetric bifurcation atlarge
n does exist. The conclusion is drawn from Fig. 7,
where it is seen that the heat transport rates are
exceedingly low at the critical point.

5. CONCLUSION

The linear stability of natural convection in narrow-
gap, spherical annuli has been investigated. A
comparison with the experimental data found in the
literature indicates that non-axisymmetric, time
periodic bifurcation will most likely take precedence
over the case considered herein for fluids with
Pr=1,10. For Pr=0.10, the results indicate the
possibility of steady, axisymmetric, bifurcated
solutions.
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APPENDIX

The following expressions are the coefficients which appear
in the disturbance equations (25} and (26). The quantities
CI(m,n}, I =1,2,...,8 in the coeflicients are a result of the
orthogonalization procedure and are defined in the latter
part of the Appendix
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STABILITE DE LA CONVECTION NATURELLE DANS UN ESPACE ANNULAIRE
SPHERIQUE ETROIT POUR DES PERTURBATIONS AXISYMETRIQUES

Résumé—On ¢tudie la stabilité linéaire pour des perturbations axisymétriques de la convection naturelle
dans un espace étroit entre deux sphéres concentriques. On cherche la solution de perturbation avec le
paramétre ¢ = 1 —», ou y est le rapport des rayons interne et externe, en allant jusqu'd I'ordre huit. Les
équations sont réduites 4 un systeme d’équations différentielles 4 I'aide d’une méthode de développements
partiels spectraux. Ces équations constituent un probléme de valeurs propres qui est résolu pour un nombre
de Rayleigh fonction de 1 et pour nombre de Prandtl Pr. Les cas considérés sont Pr = 0,1, 1, 10 et 100
pour 0,900 < # < 0,995. Une comparaison avec les résultats expérimentaux trouvés dans la littérature
indique que la bifurcation non axisymétrique périodique dans le temps prend le dessus sur le cas considéré
pour Pr = 1, 10. Néanmoins il apparait que la bifurcation stable axisymétrique est possible pour Pr = 0,1.

DIE STABILITAT DER NATURLICHEN KONVEKTION IM SCHMALEN
KUGELFORMIGEN RINGSPALT

Zusammenfassung—Die lineare Stabilitdt im Hinblick auf achsensymmetrische Stérungen der natiirlichen
Konvektion im schmalen Spalt zwischen Kugelschalen wird untersucht. Die Grundbewegung wird aus
einem Stdrungsansatz 8. Ordnung fiir den Parameter ¢ = 1 —# ermittelt, wobei n das Verhdltnis von
Innenradius zu AuBlenradius des Ringes ist. Die Storungsgleichungen werden auf ein System von gewdhn-
lichen Differentialgleichungen mittels einer Methode der partiellen Spektralentwicklungen zuriickgefiihrt.
Diese Gleichungen bilden ein Eigenwertproblem, welches fiir die kritische Rayleigh-Zahl als eine Funktion
von # und der Prandtl-Zahl Pr gelGst wird. Betrachtet wurden die Fille mit Pr = 0,1, 1, 10 und 100 fur
0,9 < 5 < 0,995. Ein Vergleich mit den experimentellen Ergebnissen aus der Literatur zeigt, daB die nicht
achsensymmetrische, zeitlich periodische Eingabelung sehr wahrscheinlich gegeniiber dem hier betrachteten
Fall mit Pr=1 und 10 vorzuzichen ist. Es zeigt sich jedoch, daB die stationire achsensymmetrische
Eingabelung fiir Pr = 0,1 mdglich ist.

YCTOVYUBOCTE ECTECTBEHHON KOHBEKIIMHM B V3KOM 3A30PE MEX/1Y JIBYMSA
COEPAMH

Amnorsums—HWccnenyeTca nuueiiHas yCTOHYHBOCTD MO OTHOMIGHHMIO K OCECHMMETPHYHBIM BO3MYIIe-
HMSM ECTECTBEHHON KOHBEKIMH B Y3KOM 3a3ope Mexay nByms chepamu. OCHOBHOE PEIEHHE NpPEeICTaB-
JIEHO B paMKax TEOPHHM BO3MYWEHHN BOCLMOro MOpSOKa IO MAjJoMy napamerpy ¢=1-—»n, roe
#—OTHOIIEKHE BHYTPEHHEr® Paqdyca KaHaa K HADY®HOMY. YPaBHeHHs A/ BO3MYIIEHHH NPUBONATCS
K CHCTeMe OOHKHOBEHHBIX JudipepeHUMAIbHBIX YPAaBHEHHH € MOMOIILIO METOAA CIEKTPAJILHBIX Pa3Jio-
KeHuit, DTH ypasHEHHS ONKCHIBAIOT 3aAauy HAa COOCTBEHHBbIE 3HAYEHUA, KOTOpas pEAeTcs NS KpUTH-
weckoro uucna Panes B 3aBBCMMOCTH OT mapaMerpa # ® uHcna [Ipamaras, Pr. Paccmartpusaiores
cnyqay, xorza Pr=0,1, 1, 10 » 100 npu 0,900 < 5 < 0,995. Cpasnenne c AMCIOIMMHCH B JIATEpaType
IKCHEPHMEHTANLHEIME TaHHBIMM TOKa3bIBaeT, YTO HCOCCCHMMETDHYHAS NMEepHOAMYecKas Oudypxaums
6yaer, BepOATHO, MPEBATAPOBATh HAd PACCMATPHBAEMBIM CllydaeM np# Pr =1 u Pr = 10. BeposTtHo,
CTaUMOHAPHAS ocecHMMeTpHYHan 6udypkauua BosMoxHa npu Pr = 0,1.



