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Abstract-The linear stability with respect to axisymmetric disturbances of natural convection in narrow- 
gap, spherical annuli is investigated. The basic motion is an eight-order perturbation solution in the small 
parameter E = 1 -q, where q is the ratio of inner radius of the annulus to outer radius. The disturbance 
equations are reduced to a system of ordinary differential equations by means of a method of partial spectral 
expansions. These equations constitute an eigenvalue problem which is solved for the critical Rayleigh 
number as a function of 9 and Prandtl number, Pr. Cases considered are Pr = 0.1, 1, 10, and 100 for 
0.900 < r7 d 0.995. A comparison with the experimental results found in the literature indicates that non- 
axisymmetric time periodic bifurcation will most likely take precedence over the case considered herein for 

Pr = 1,lO. However, it appears that steady axisymmetric bifurcation is possible for Pr = 0.1. 

1. INTRODUCTION 

STABILITY analyses for a variety of flows in spherical 
annuli have been reported in the literature. Examples 
include stability of spherical Couette flows using 
energy [l] and linear [2] methods, and stability of the 
motionless state of a thermally stratified fluid, i.e. the 
spherical analog of the Benard problem [3-53. Here, 
the linear stability of the natural convection-driven 
basic motion is examined for narrow-gap, spherical 
annuli. The disturbances are assumed to be 
axisymmetric. The non-zero basic motion arises 
through density variations within the fluid due to the 
inner and outer spherical boundaries being at different 
temperatures. The density gradient is not everywhere 
parallel to gravity and thus the fluid is in motion for all 
non-zero temperature differences across the 
boundaries. The present investigation is thus to be 
contrasted with stability analyses for the spherical 
analog of the Benard problem. 

Motivation for this analysis is provided by the 
unsteadiness in the basic motion as observed in refs. 
[6-81 when a certain critical value of the Rayleigh 
number (Ra = g/?ATAR3/vcc) is exceeded. The 
experiments of Bishop et al. [6] and Yin et al. [7,8] 
have indicated that the nature of the fluid motion is 
dependent upon the radius ratio and Prandtl number. 
For Ra below a certain critical value, a steady 
‘crescent-eddy’ (CE) flow pattern is observed in the 
range of radius ratios (r] = RJR,) of 0.3m.92 for air 
as the working fluid (cf. Fig. 1). This flow pattern 
consists of thin, high speed layers ascending along the 
inner sphere and descending along the outer sphere 
with a large, relatively stagnant, central region. As Ra 
is increased while limiting the radius ratio to small or 

t To whom correspondence should be addressed. 

intermediate values, a steady, kidney-shaped eddy 
(KSE) flow pattern is observed. The flow is similar to 
the CE type with the exception that the central low 
speed region is distorted into a shape resembling a 
kidney. 

If Ra is increased above certain critical values. 
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FIG. 1. Natural convection flow regimes for air in spherical 
annuli based on the flow visualization data of Bishop et al. 
[6] and Yin et al. [7,8]. The results of the present 
calculations are shown (Pr = 1) along with the line 
Ra, = 41.3 (uc = 3.12) corresponding to the case of a 
horizontal fluid layer heated from below. The flow regime 

boundaries are only approximately drawn. 
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gravitational acceleration constant 
[m s-‘3 
partial spectral expansion 
functions 
Grashof number, g/3ATRz/v2 

J-1 
thermal conductivity of the fluid 

PJvm -l “c-7 
numbers of terms retained in the base 
flow expansion 
number of terms retained in the 
disturbance flow expansion 
iocal Nusselt number 

surface-averaged Nusselt number of 
criticality 
base flow, disturbance pressure field 

CPaf 
disturbed flow pressure, P + p e-“’ [Pa] 
Legendre polynomial of the first kind 
of degree n 
Prandtl number, v/u 
radial coordinate [m] 
inner and outer radii of the spheres, 
scaled by AR 
stability parameter, E~“G~“’ 
Rayleigh number, g@AYf(AR)‘/va 
value of R at criticality Gr1’2a3!2 
inner, outer radius of the siheres [m] 

R, -Ri Cm1 
wave number, cr+icu [s-l] 
time [s] 

T base flow temperature field PC] 
7;, T, inner, outer surface temperature [‘Cl 
AT T,--q c”c-J 
v,, %? radial, latitudinal disturbance velocity 

[m s-i] 

v,, v, radial, latitudinal base flow velocity 
[m s-i] 

3 disturbed flow velocity vector (t?,, i&) 
[m s-i]. 

Greek symbols 
a thermal diffusivity [m2 s _ ‘1 
ai, pi, yi, &, xi coefficients of the basic motion 

P coefficient of volume expansion [K] 
I,A,E, Y, Q functions describing the base 

flow 
E 1 --r, relative gap width 

i scaled radial coordinate, (r -q),k 

? radius ratio, T/R, 
B latitudinal coordinate 

; 

kinematic viscosity [m2 s- ‘1 
cos 0 

; 

real part of s [s-l] 
longitudinal coordinate 

@ disturbance temperature field E”C] 

ti disturbance streamfunction [m3 s-‘1 
Y base flow streamfunction [m” s - ‘1 
w imaginary part of s [s-‘1. 

Subscript 
C value at criticality. 

Superscript 

d/d& 

unsteady flows are observed for air. At small radius 
ratios, the modified kidney-shaped eddy (MKSE) 
occurs. The pattern is characterized by contractions, 
of somewhat irregular period, in the central low speed 
region. At intermediate radius ratios, the periodic 
interior contraction (PIC) flow regime is reported. 
This pattern is similar to the MKSE with the exception 
that the magnitude of the oscillations in the low speed 
region increase to the point where interaction with the 
ascending high speed layer occurs. The three- 
dimensional spiral ffow (3DSF) pattern occurs at 
inte~ediate to large radius ratios (i.e. q N 1) and is 
characterized by the separation of the ascending high 
speed layer which then shoots into the upper annular 
region forming counter-rotating vortex pairs. The 
vortex pairs then become entrained in the descending 
outer layers forming three-dimensional spiral 
motions. The falling vortices (FV) flow pattern occurs 
at large radius ratios and consists of the formation and 
shedding ofcounter-rotating cells in the upper annular 

region. These cells periodically coalesce and then 
become entrained in the descending flow. 

The experimental results for water [7,8] indicate 
(cf. Fig. 2) only one steady flow pattern, the steady 
dog-face type (SDFT), which occurs at all radius ratios 
for smaller Ra. This pattern consists of three distinct 
regions. The first is the thin, high speed layers 
ascending along the inner sphere and descending 
along the outer sphere. The second is a low speed 
region which is located in the upper portion of the 
annulus and is composed of two secondary cells 
rotating concurrently with the primary flow. In the 
remainder of the annulus there is a large and relatively 
stagnant region in which the motion may be detected 
only by long-time photographic exposures. 

As Ra is increased from low values an unsteady dog- 
face type (USDFT) flow develops which is similar to 
the SDFT with the exception that the upper secondary 
cell is no longer stationary. The cell randomly forms 
and then submerges itself in the large stagnant region 
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FIG. 2. Natural convection flow regimes for water in 
spherical annuli [7,8]. Results from the present calculations 
with Pr = 10 are shown. The line Ra, = 41.3 (uC = 3.12) 
corresponding to the case of a horizontal fluid layer heated 
from below is also shown. The flow regime boundaries are 

only approximately drawn. 

occupying the upper annular region. Other unsteady 
flow patterns for water include the interior tertiary 
(IT) flow pattern which occurs at intermediate radius 
ratios with sufficiently large Ra. In this flow, the weak 
shear region between the secondary cells of the SDFT 
flow expand to form a weak, oscillatory, tertiary cell 
while the upper secondary cell is reduced in size. At 
large radius ratios, a FV flow pattern is observed 
which is similar to the FV flows for air. 

Aside from the flow visualization results, many 
analytical and numerical studies have been conducted 
to determine the basic motion in this geometry. The 
majority of these studies use the steady form of the 
governing equations (e.g. [9-l 1)) although some have 
used the transient formulation (e.g. [12, 133). Only 
one work, that of Robertson [13], actually reported 
evolutionary results. In general, the computed steady 
streamline contours and isotherms show good 
agreement with the flow visualization results, 
especially for air. None of these studies report 
transition to unsteady flow for increasing Ra, as was 

observed in the flow visualization experiments. 
Analytical studies of the stability of natural 

convection in spherical annuli is, to the best of our 
knowledge, non-existent in the literature. In a related 
geometry, Mojtabi et al. [14] used the energy stability 
theory to perform a local analysis of the stability of 
natural convection in concentric, cylindrical annuli. 
The base flow was calculated by a perturbation 
method in Rayleigh number and terms were 
maintained through second order. The temperature 

and radial velocity disturbances were developed as 
periodic wave functions of the axial coordinate. 
Results of their analysis indicate that as 1 + 1, the 
critical Rayleigh number tends to 1708 with a wave 
number of 3.12, corresponding to the onset of 
convection in a horizontal fluid layer with rigid-rigid 
boundaries and heated from below [15]. 

In the present study, linear theory is used to 
examine the stability with respect to axisymmetric 
disturbances of natural convection in a narrow-gap, 
spherical annulus with isothermal boundaries. 
Specifically, the objective is to find a first 
approximation to the dividing line between steady and 
unsteady flows for TV = 1 as reported in the 
experimental studies [6-81. 

2. THE BASIC MOTION 

An approximate closed form solution for the flow in 
this geometry has been obtained by Wright [lo] for 
the special case of narrow-gap, spherical annuli. This 
solution is briefly described here. 

The physical domain is bounded by concentric inner 
and outer spherical surfaces of radii Ri and R, which 
are maintained at uniform temperatures 7; and T,, 
respectively, with 7; > T,. Standard spherical 
coordinates are used with (~,(,c#J) being the 
dimensionless radius, cosine of the polar angle 0, and 
azimuthal angle, respectively. The fluid is assumed to 
be strictly Boussinesq and the motion is assumed to be 
axisymmetric. Taking the curl of the momentum 
equation and introducing a streamfunction defined in 
terms of t: and V, as 

y-g, @ 
I/ = _(l-Tz)-“* CJY - (1) Y & 

it is found that the momentum and energy equations 
become 

E4y = Gr1~2{kj3$[~~] 

-$[~$]-(l-t2)[r$--~$]} (2) 

PrGrl’Z 
V2T=T 

PPaT iW i3T ----- 
i% a[ ay ar 1 (3) 

where 

E2(_) _ ai) I ~3 aZ(-) 

V(.) +_cd!L,+~(~)$),. 
In (2) and (3), Y has been scaled in terms of the 
fluid particle buoyancy rise velocity, Tin terms of the 
temperature difference across the gap, and r in terms of 
R,. The Prandtl and Grashof numbers are defined, 
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respectively, as 

pr=” 
u’ 

Gr = g/IATRdlv2. 

The four boundary conditions on Y and the two 
boundary conditions on Tare obtained from the no- 
slip and constant temperature conditions at the inner 
and outer boundaries. Hence 

~(~.~)=~(l,~)=~(~,T)=~(l,t)=O (4) 

T(r1>5) = 1, T(1,5) = 0 (5) 
where r) = RJR,. 

Wright examined the case of narrow annular gaps, 
which in terms of 7 requires 1 -rl = E <c 1. To indicate 
explicitly the relative order-of-magnitude of terms for 
this case, the radial coordinate r in (2) and (3) was 
resealed in terms of the dimensionless variable c as 

[-r-q (6) 
& 

so that the radial coordinate is mapped onto [: [0, 11. 
Wright found that under this scaling (2) and (3) with 
(4) and (5) admitted a perturbation solution in E of the 
form 

Y(1,5) = ; s”Y’,(i,<) (7) 
“=O 

“=O 

Substituting (7) and (8) into (2) and (3), Wright found 
that for a given order of a, the problem was reduced to 
one of solving ordinary differential equations in ‘I”, 
and T, with only derivatives with respect to [ occurring 
on the LHS. Closed form solutions were obtained 
through N, = 8 and in tabular form through N, = 11. 

In the solution of the stability problem it was found 
that the numerical technique used to solve the 
equations was somewhat better behaved when the 
equations were resealed in terms of the gap width, 
AR = R, -R,, as the length scale. In terms of this 
scaling, Wright’s solution may be expressed as 

Y(i,5)-(1-52)CT(i;R,Pr,~)+rA(i;R,Pr,~)1 (9) 

T(i, 5) = TK; R, Pr, a) 

+ 5CZ(i; R, Pr, E) + <a([; R, Pr, &)I 
where 

(10) 

1- = ; ,i (- l)‘cc,ji 
t-2 

A = $ f (- l)‘/&i’ 

i=2 

r= 1+; (_l)‘Yi[’ (11) 
i=l 

z= !$T! f (_ l)ia,ji 

i=l 

I2 = c2R4Pr f (- l)‘xici. 
i=l 

In (9) and (lo), r is now scaled in terms of the gap 
width. The parameter R is the square root of the 
Grashof number based on gap width 

R = [gpA7jAR31” = e3,2Gr’/2, (12) 

The coefficients ai, pi, ‘Jo, di and xi in (12) are 
continuous functions of R, Pr and E. The coefficients 
are quite lengthy and are omitted here; they can be 
found in ref. [16]. Information on the range of 
applicability and convergence of (9) and (10) can be 
found in ref. [lo]. 

3. THE STABILITY PROBLEM 

We begin by writing the equations of motion 
governing the time evolution of the flow for a 
Boussinesq fluid in spherical coordinates. When the 
length scale is based on AR the variable r is replaced by 
r&, and we find with < = r - V/E that 

v-i=0 (13) 
a 
ze+RBVi 

= -VP+R?(~e,-(1-~2)1/2eg)+V2i, (14) 

Prg+PrRi*V?= V2? (15) 

The dependent variables are now decomposed into a 
component representing the basic motion and a 
component representing a perturbation of the basic 
motion. It is assumed that the disturbances are 
axisymmetric and that the solutions to the 
perturbation quantities are in terms of exponentials. 
The dependent variables are written as 

t(r, 5, t) = V(r, 5) +v(r, 5) e-“’ (16) 

?(r, t,t) = T@,<)+(I)@,<) e-“’ 

F(r, 5, 4 = P(r, 5) +p(r, 5) ems’ 

(17) 

(18) 

where s = o+iw; V, P and T are basic motion 
quantities, and u, p and @ are disturbance quantities. 
Equations (16H 18) are now substituted into (13F( 15) 
and nonlinear terms in the disturbance quantities are 
neglected. Taking the curl of (14) and introducing 
basic motion and disturbance streamfunctions Y and 
1(1, respectively, (14) and (15) become 

E4$+sE2$ = R 
(l-52) (: 
~- 

r2 ag 
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PrR 
WD+Prs@ = 12 

aY am aY am 
----- 
ar ay ay ar 

arr a$ a7- a$ 
+agTcTrd5 ’ 1 (20) 

From (4) and (5) and (16) and (17) one finds that the 
conditions on $ and @ are 

z (r:, 5) = $ (r,*, 5) = g (rt, 5) 

=z(rz,r)=O (21) 

@(I:, 5) = @(To*, r) = 0 (22) 

where, under the scaling based on gap width, rt = V/E 
and r,* = l/6. Equations (19) and (20) with (21) and 
(22) compose the eigenvalue problem governing the 
linear stability of (9) and (10) to axisymmetric 
disturbances. 

To reduce the system of partial differential 
equations to a system of ordinary differential 
equations, the method of partial spectral expansions is 
used. The dependent variables are therefore 
expressed as 

W, 0 = (I- r2) 3 g,(r)P,(O 
n=O 

(23) 

W, 5) 2: 2 M)P,(S) 
n=o 

(24) 

where P,(t) are the Legendre polynomials of the first 
kind of degree n and g,(r) and h,(r), n = 0, 1, . . . , N,, 
are to-be-determined functions of r. Note that the term 
(1 - c2) = sin’ 0 has been introduced in (23) to ensure 
the condition of no flow across the polar axis, 
consistent with the assumption of axisymmetric 
disturbances. One can easily verify that the analogous 
insulated condition for @ is identically satisfied by (24) 
at 5 = -l,l. 

To eliminate the angular dependence, (9) and (10) 
and (23) and (24) are substituted into (19) and (20). 
The resultant equations are then multiplied by P,,,(t), 
where m ranges from 0 < m < N,, and then integrated 
over the domain 5: [ - 1, 11. Using the orthogonality 
and recursion relationship for the Legendre 
polynomials, the explicit angular dependence can then 
be eliminated. Evaluation of these integrals results in 
coefftcient matrices indexed by m and n. For each 
index m, 0 =$ m < N,, the following equations are then 
obtained. 

9; = 
RA 

“’ + 
2m(m+ 1)+2 -- 

r 2 gm r2 

+RA[m(m+ 1)+2] 
r4 > 

gin 

8-m(m+ l)[m(m+ 1)+2] 

r4 

+s[m(m+ 1)+2] 4RA[m(m+ 1)+2] 

r2 - rs gm 

_rRh, +Wm+ 1) Nd 
m 2 “go’ 

A,, 9. + R,, s:, 

+c,“s::+Qll”sZ+Wr,J (25) 

h” = -2 h, + [Mm+ 1) - Prsr’l 
m r m r2 

h 

m 

PrR(2m + 1) 
++g,-Ah,)+ 2 

x .zo {F,,h,+G,,h:,+H,,g,+I,,g:,} (26) 

where ’ = d/dr. In (25) and (26), the radially- 
dependent base flow functions have been evaluated at 

i = i(r). 
The coefficients A,,, B,,, . . . , I,, under the 

summation signs in (25) and (26) contain the base flow 
functions (11) as well as the coefficient matrices arising 
from the Legendre polynomial integrals. The 
expressions for these coefficients and coefficient 
matrices are quite lengthy and are given in the 
Appendix. 

From (21H24), it is easily shown that boundary 
conditions on the unknown functions g,(r) and h,(r) 
are 

g&r*) = sb(r?) = g&r,*) = g:(r,*) = 0, 

n = 0, 1, . . . , N, (27) 

h,(r:) = h,(r,*) = 0, n = 0, 1,. . . , N,. (28) 

To solve (25) and (26) with (27) and (28), we assume 
that a principle of exchange of stability exists. Hence, s 
is set to zero in (25) and (26) and R is treated as the 
stability parameter. The lowest value of R for which 
(25) and (26) with (27) and (28) admits a nontrivial 
solution is then the critical Grashof number, R:. 

The equations are solved by forward integration 
using the classic fourth-order Runge-Kutta [17] 
technique. The numerical scheme is similar to that 
reported by ref. [2]. A brief description is provided 
here; full details can be found in ref. [16]. 

Equations (25) and (26) with conditions (27) and 
(28) is in the form of a boundary value problem. To 
solve via forward integration, one is then confronted 
with 3N, + 3 unknown conditions at either boundary. 
To circumvent this, define 3N,+3 sets of 3N,+3 
linearly independent ‘guessed’ conditions at (say) r:. 
Equations (25) and (26) are then integrated once for 
each set of extra conditions in conjunction with the 
known conditions (27) and (28), thus requiring 3N, + 3 
integrations of the governing equations. The values of 
the dependent variables g,,, gk and h,, n = 0, 1, . . . , N,, 
will in general not meet the required conditions (27) 
and (28). However, the problem is linear so that a 
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linear combination of the independent solutions can 
be constructed which meet the required conditions. 
For the problem to have a nontrivial solution, the 

determinant of the coefficient matrix of the linear 
combination of the solutions must vanish when 

evaluated at r,*. In general, this condition cannot be 
met for arbitrary values of R. Hence, R is increased 
from zero until the determinant changes sign. This 
criterion then determines the value of the critical 
Grashof number, Rf. 

In terms of numerical accuracy, the number of 
integration steps was varied to determine the number 

required to reduce changes in R, to less than 0.10 %. It 
was found that 20 integration steps were sufficient for 
all combinations of n and Pr considered. 

4. RESULTS AND DISCUSSION 

The computer algorithm was designed to calculate 

R, for given values of the parameters n, Pr, N, and N+ 
For the computations, N, was fixed at eight and N, 

was varied from 0 to 12 to ascertain the converged 
value of R, for given q and Pr. Fluids with Prandtl 

numbers of 0.1, 1.0, 10 and 100 were considered for 
radius ratios ranging from 0.900 to 0.995, i.e. 

& = 0.005-O. 1. 
The convergence of R, with increasing N, was found 

to be oscillatory. Figures 3 and 4 illustrate the nature 
of the convergence for the two cases Pr = 1 with 

YJ = 0.950 and Pr = 10 for tl = 0.995. The series clearly 
converged only for the cases Pr = 10 and 100 for 

q = 0.995. The epsilon algorithm [18], a sequential 
method for calculating Pad6 approximates, was used 

to estimate the converged value of R,. It was 
determined that the nature of the convergence to R, 

1401 
0 2 4 6 0 10 12 

Nd 

FIG. 3. The influence of the number of terms retained in the 
partial spectral expansion on R, for the disturbance flow 
field. In this case, Pr = 1 and 4 = 0.950. The convergent 
value of R, was predicted from the epsilon algorithm [18]. 
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- Epsilon Algorithm 
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FIG. 4. The influence of the number of terms retained in the 
partial spectral expansion on R, for the disturbance flow 
field. In this case, Pr = 10 and 7 = 0.995. The convergent 
value of R, was predicted from the epsilon algorithm [ 183. 

became apparent after N, = 1; therefore, the epsilon 
algorithm was applied to the partial sums from 
N, = 2-12. The results of the epsilon algorithm 
calculations are indicated in Figs. 3 and 4. 

Figure 5 shows the critical Rayleigh number results 

for the various Prandtl numbers considered. In terms 

of the stability parameter R, the Rayleigh number 
based on gap width is 

Ra = R’Pr (29) 

ouu I 
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FIG. 5. A summary of the critical Rayleigh numbers for 
natural convection in narrow-gap, spherical annuli with 

axisymmetric disturbances is shown in this illustration. 
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FIG. 6. The dependence of the stability parameter 
R, = RaJPr”’ on the Prandtl number is shown using the 
data of Fig. 5. In addition, data for the limiting case Pr = 0 
are included. R, does not include the Prandtl number in its 

definition. 

and shown in Fig. 5 is 

Ra, = RcPr112. (30) 

Figure 5 indicates that for Prandtl numbers of 1,10 
and 100, the data appear to coalesce into a single curve 
when plotted in terms of Ra,. For Pr = 0.10, however, 
the data lie significantly below the trend set by the 
remainder of the data. This occurrence indicates that 
the Rayleigh number cannot be used as a single 
parameter to determine instability. That this is true 
may be illustrated by the following argument. One 
would like to look at the limiting case Pr -+ 0. No-slip 
boundary conditions have been imposed; thus, to take 
this limit, one must consider the case a + cc with v 

finite since Pr = v/a. Then, for Pr + 0, the disturbance 
energy equation (26) corresponds to Laplace’s 
equations in spherical coordinates and since the 
boundary conditions on @ are homogeneous, the only 
solution is @ = 0. The disturbance problem then 
becomes strictly hydrodynamic. The case a + co with 
AT finite implies Ra + 0. Hence, in the limit Pr + 0, it 
appears that the Grashof number rather than the 
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FIG. 7. The dimensionless average surface heat transfer rate, 
z, at criticality is shown. 

Rayleigh number should be viewed as the parameter 

controlling stability. Indeed, as Pr + 0, the base state 
temperature solution (10) approaches the conduction 
solution and the streamfunction solution (9) becomes 
solely dependent upon the Grashof number, i.e. 
Y(R, Pr,.c) + Y(R,&)I,,,,. The results of Fig. 5 have 
been replotted in Fig. 6 in terms of R, = Ra,/Pr”’ 
(numerical values are listed in Table I) in order to 
illustrate the dependence of R, on Pr as the limit 
Pr = 0 is approached. 

Figure 7 is a plot of the average Nusselt number, - 
Nu, at the critical point for the different Prandtl - 
number fluids considered. Nu is defined to be the 
integrated average of the local Nusselt number over 
the inner spherical surface. The local Nusselt number 
is taken to be the ratio of the local heat transfer rate to 
a reference rate defined to be 

(31) 

Upon evaluation of the integral, one finds 
- 
Nu = - {T’(r*) +$‘(r:)} (32) 

where r and R are defined under (11). Figure 7 

Table 1. Values of the stability parameter, R, 

Pr 

q 0.0 0.1 1.0 10.0 100.0 

0.900 338.0 213.1 168.7 52.9 15.9 
0.925 217.3 224.8 193.9 61.0 18.4 
0.950 266.6 152.6 236.6 74.7 22.6 
0.975 254.6 164.5 334.8 102.7 32.2 
0.985 - 424.4 - - 
0.990 530.2 - 
0.995 887.6 419.8 750.5 229.2 72.2 
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indicates that Nu is relatively insensitive to n. There 
are slight fluctuations, but this is believed to be a result 
of inaccurate predictions of the converged value of R, 

using the epsilon algorithm. 
The present results are compared with the 

experimental flow visualization results of Bishop et al. 
[6] and Yin et al. [7, S] in Figs. 1 and 2. In these figures 
we have delineated (to the best of our ability to 
interpret the data) the various reported flow regimes, 
including the regions of steady and unsteady flows. 
Also included is the result Ra, = 41.3 with wave 
number 3.12 for the case of a horizontal fluid layer 
heated from below with rigid-rigid boundaries. 
Mojtabi et al. [14] also found these to be the 
associated limiting values for the case of horizontal, 
coaxial cyfinders. 

The present results for air and water indicate that 
Ra, --+ zx as q + 1, in agreement with the results of the 
Binard problem Cl.51 with wave number 0 (i.e. 
axisymmetric disturbances). The experimental data 
[6--S] would seem to indicate that the transition line 
between steady and unsteady flows approaches 
Ra, = 41.3 as n -+ 1 and also that the nature of the 
bifurcated flow for large ;rl is three-dimensional and 
time periodic (i.e. the FV flow pattern). The present 
results assume, a priori, the existence of steady 
bifurcating solutions and therefore the analysis fails in 
predicting this transition. However, the results of the 
current work will provide an upper bound to the 
critical Rayleigh number. 

There is presently no experimental data for which a 
comparison with the Pr = 100 and 0.10 results can be 
made. The results for Pr = 0.10 indicate that the 
possibility for steady axisymmetric bifurcation at large 
q does exist. The conclusion is drawn from Fig. 7, 
where it is seen that the heat transport rates are 
exceedingly low at the critical point. 

5. CONCLUSION 

The linear stability of natural convection in narrow- 
gap, spherical annuli has been investigated. A 
comparison with the experimental data found in the 
literature indicates that non-axisymmetric, time 
periodic bifurcation will most likely take precedence 
over the case considered herein for fluids with 
Pr = 1, 10. For Pr = 0.10, the results indicate the 
possibility of steady, axisymmetric, bifurcated 
solutions. 
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APPENOIX 

The following expressions are the coenicients which appear 
in the disturbance equations (25) and (26). The quantities 
CI(m, n), f = 1,2,. , . ,8 in the coefficients are a result of the 
orthogonalization procedure and are detined in the latter 
part of the Appendix 

A 
Inn 

32A [n(n-l-I)-2]A’ 

r5 r4 



Stability of natural convection in narrow-gap, spherical annuli 1583 

+2[n(n+ 1)_2]f’~2 I-” ’ 

r* ( 11 
--$ Wm,n) 

+ 12[n(n+ 1)+6]A +Z[n(n+ Q-616 

I 

+2~~~~3~m,“~-~+t~~+~!+21~ 

_(~~)C4(m,n)+~~+in(n+fi-Zlr 

C6(m, n) 

B,= 
2[n(n+l)+2]K2(m,n) 

r4 

4l-C5(m, n) 
r4 

6AC6(m,n) 

rQ 

4lT2(m,n) 6AC3(m,n) 

r3 - r3 

+ r’[C4(m, n)- CS(m, n)J AC6(m, n) 

r2 -7 

D 
mn 

=i C2K2(m, n) -k 3AC3(m, n)] 

rs 

E 111” = Cl(m, n) 

F., = r’[C4(m,n)-Wm,n)] +A’[Cl(m,n)-C6(m,n)] 

G,, = 2l-C2(m, n) + 3AC3(m, n) 

H,, = T’[CS(m, n) - C4(m, n)-t 2C2(m, n)] 

+~[C6(m,n)-&l(m,n)+2~3(m,n~] 

+R’[CT(m, n) -CS(m, n) + 2C8(m, n)] 

I, = 28[C2(m,n)-Cl(m,n)] -BC3(m,n) 

Clhn) = <tpk,P_) 

Cz(m,n) = (tp., P,> 

Wm,n) = (t’p., PJ 

Wm,n) = <p;,p,> 

CS(m,n) = <EZP;,P,> 

C6(m,n) = @p;,P,,,) 

C’ffm,n) = @P”, PJ 

Cg(m,n) = <<sP,,, I’,,,> 

where: 

* <(-),F,> = 
s 

(*P,,,dt 
-f 

2n I- 2n+l’ n=m 

Cl(m,n) = l+(-lfR+DI, n > m 

I 0, otherwise 

r 2(n f 1) 

(2n + 1)(2n + 3) ’ m = n + ’ 

C2(m, n) = 2n 

(2nt 1)(2n- 1)’ 
m=n-1 

0, otherwise 

C3(m, n) = 

(n+l)(n+2) 

(n +f)(2n + 3)(2n+ 5) ’ 
m=n+2 

n(n- 1) 

(n++)(2n- 1)(2n-3)’ n = m+2 

(n+ I)* n2 

~2n+l)‘(n~~)+(2n+~~~(n-~)’ m=O 

’ 0, otherwise 

2, n=m+1 

l-(-t)“+“, n>m+l 

0, otherwise 

CS(m, n) = 

(2n + 1)(2n - 1) -n(n + 1) 

(n+j)(2n-If -’ 

l-(-l)‘+,, n 1 m+ 1 

n(n t 1) 

(n+j)(Znt3)’ ‘=m-’ 

10, otherwise 

I 

n n(n + 1)2 

(n+(2n+l)%z+3) 

n=m+l 

C7(m, n) = 

d(n f 1) 

(2n + l)Z(n -+, ’ 

C6(m, n) ==( n(n+ l)(n+2) 

(n+j)(2n+3)(2nt5)’ n =I m-2 

2+ 
n(l-n)(n+ 1) 

(n+f)(2n-1)(2n-3)’ n=m+2 

l+(- I),+,, n>mandn+m+Z 

0, otherwise 

n(n + 1) 

‘+(n+$)(ln- 1) C 

n(n + 1) 

(2n-k 1)(2n+3) 

m=n 

(n-1)*+(2n- 1)(2n-3) 

(2n- 1)(2n-3) 

nz 

-(2n-1)(2n+l) ’ m=n-l 1 
n(n+l) 1 

[ 

(n + 2)’ 

(2n+3) (n+(2n+1)(2n+3)(n+j) 

(n + 1)s 

’ (2n + 1)(2n + 3)(n +$) 

n(n + 1) 

-(fl+f)(2n-1)(2n+l) ’ m=n+l 1 
n(n + l)(n + 2)(n + 3) 

(n+t)(2nt3)f2ni-S)(2n+?) m=n+3 

2- 
n(n+l)(n-l)(n-2) 

(n++)(2n-1)(2n-3)(2n-5)’ m=n-3 

l-(-l)“+=, men-l andm#n-3 

0, otherwise 
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Z(n + l)(n + 2)(n + 3) 

(Zn f 1)(2n + 3)(2n + 5)(2n + 7) ’ 
m=n+3 

2(n + l)(n +2)’ 

(2n + 1)(2n + 3)‘(2n + 5) 

2(n + 1) 

+m 

(n + 1)’ 

(2n+ 1)*(2n+3) 

n* 

+(2n+ 1)2(2n- 1) ’ 1 m=n+l 

C8(m, n) = 2n(n - 1)2 

(2n + 1)(2n - l)2(2n - 3) 

2n 

+(2n-11 [ 

(n+ 1)’ 

(2n+ l)‘Qn+3) 

n2 

+(2n+1)2(2n-1) ’ m=n-l 1 I (2n + 1)(2n 2n(n - - 1)(2n l)(n - - 2) 3)(2n - 5) ’ m=n-3 

t 0, otherwise 

STABILITE DE LA CONVECTION NATURELLE DANS UN ESPACE ANNULAIRE 
SPHERIQUE ETROIT POUR DES PERTURBATIONS AXISYMETRIQUES 

R&au~&-Gn ttudie la stabilite liniaire pour des perturbations axisym~triques de la convection naturelle 
dans un espace Btroit entre deux spheres concentriques. On cherche la solution de perturbation avec le 
parametre E = 1 -q, ou a est le rapport des rayons interne et externe, en allant jusqu’a l’ordre huit. Les 
equations sont r&mites a un systeme d’equations differentielles a l’aide dune mirthode de developpements 
partiels spectraux. Ces equations constituent un problbme de valeurs propres qui est resolu pour un nombre 
de Rayleigh fonction de rl et pour nombre de Prandtl Pr. Les cas consideres sont Pr = O,l, 1, 10 et 100 
pour 0,900 5 n 5 0,995. Une comparaison avec les resultats exp~rimentaux trouv&s dans la litterature 
indique que la bifurcation non ~is~~t~que p&riodique dam Ie temps prend Ie dessus SW le cas con&de& 
pour Pr = 1, IO. Neanmoins il apparait que la bifurcation stable axisymbtrique est possible pour Pr = 0,l. 

DIE STABILITAT DER NATURLICHEN KONVEKTION IM SCHMALEN 
KUGELFdRMIGEN RINGSPALT 

Z~nf~ng-Die lineare Stabilitat im Hinblick auf achsens~met~~he St6~ngen der nat~lichen 
Konvektion im schmalen Spalt zwischen Kugelschalen wird untersucht. Die Grundbewegung wird aus 
einem Storungsansatz 8. Ordnung fiir den Parameter E = 1 -g ermittelt, wobei rl das VerhHltnis von 
Innenradius zu AuDenradius des Ringes ist. Die Stonmgsgleichungen werden auf ein System von gewohn- 
lichen Differentialgleichungen mittels einer Methode der partiellen Spektralentwicklungen zuriickgefiihrt. 
Diese Gleichungen bilden ein Eigenwertproblem, welches fur die kritische Rayleigh-Zahl als eine Funktion 
von q und der Prandtl-Zahl Pr gel&t wird. Betrachtet wurden die Fiille mit Pr = O,l, 1, 10 und 100 fiir 
0,9 < 4 < 0,995. Ein Vergleich mit den ex~~mentellen Ergebnissen aus der Literatur zeigt, daB die nicht 
achsensymmet~sche, zeithch periodische Eingabelung sehr ~ahrscheinlich gegeniiber dem hier betrachteten 
Fall mit Pr = 1 und IO vorzuziehen ist. Es zeigt sich jedoch, daR die station&e achsensymmetrische 

Eingabelung fiir Pr = 0,l miiglich ist. 

YCTO@HiBOCTb ECTECTBEHHOH KOHBEKHHH B Y3KOM 3A30PE MEXnY ABYMIl 
CQZEPAMH 

Ammamf-HmeAyews nmieiinaa ycrot+imrocrb no orriomenmo K ocecuM~erpri~nh]M BosMyure- 
HWRM ecTeeTneHH0~ KOHBBKIIHH B y3KOM 3asope hfe;acny AByMK c@epabts. O~HOBHO~ perrremie IIpeACTaB- 

neHo B paMIcax TeopHH B03MyIuemifi ~ocb~oro nopnnrta no ~arrordy napabmpy E= l-q, me 
rl-OTHOmeHne B~TpeHHCXO&WUi)‘Cii KlUiWIZ3 K HapymOMy.YpaBHeHHnanK BO3bQ'JIleHHii IlpHBOAKTCr 

K CHCTeMe 06bSKHOBe?iHbIX AEi@oe~HUEiZUibHbIX ypaBHeHl@ C IIOMOUWO MeTOAa ClIeKTpiUbHbIX pa3JIO- 

xewfi.Z&ii ypaBHems 0115fcbiB~~ 3aAarauy aa co6cTxieHHbIe 3Haqemm,KoTopan peruaewn AA% K~HTE- 

~ec~oro qxcna Pmen n 3amicmocm OT napaMeTpa q H wcAa I&xm~~m, Pr. PaccMaTpuBmTcn 

cAysax, Koma Fr = 41, 1, 10 R 100 np~ 0,960 <: q < 0,995. Cpamemie c ~e~~~~~ B mfrepa~ype 

3KCIIepSiMeHTSIbHbIMH AaHHbIMH lIOKa3hlBaeT, YTO HeOCeCHMMeTpWEHaK RepHOAJirteCKalI 6si~yprraunn 
ByneT, BeponTHo, IIpeBaJnipoeaTb H~.U paccMaTpHBaehfbtM CnyPaeM npss Pr= 1 a Pr= 10. ~%Z.~OSTHO, 

cTau&ioiiapwaaocecaMMeTpu%IaR6~~ypKaumBO3MOxHanp~Pr= OJ. 


